CLOSING PRICE PREDICTION FOR AUCTIONS IN MOBILE E-COMMERCE- A COGNITIVE AGENT BASED APPROACH

Nandini S. Sidnal 1, Sunilkumar S. Manvi2

Bidding in e-auctions in mobile environment is a challenging task as the bidder is mobile that may cause disconnections and may not be acquainted with the e-market environment that hosts multiple concurrent e-auctions. One of the ways to ensure winning a bid is to predict the closing price of considered relevant auctions to decide the bidding strategies. Closing price prediction of an auction depends on market parameters and bidders behavior. This paper presents a cognitive agent based model based on Belief Desire Intention (BDI) architecture to predict the closing price on behalf of the bidder on every round of an auction (English auctions). The model is simulated to test the performance measures. A common platform of bidding strategies are considered for comparing the proposed model with grey theory based closing price prediction model. The results demonstrated that the proposed model performed better than the grey model.

Key words: Auctions, Closing price prediction, BDI agent, Belief formulator, mobile bidders

1. Introduction

Mobile E-commerce is an extension of E-commerce that has the ability to conduct commerce using wireless mobile devices such as mobile phone, PDA, smart-phone, dash-top devices, etc. It is defined as buying and selling of services, information or goods irrespective of locations initiated and/or completed by using mobile access to computer-mediated networks with help of an electronic handheld device in wireless network environment. Some of the applications of mobile E-commerce are mobile ticketing, location-based services, mobile banking, mobile brokerage, auctions, mobile purchase, mobile marketing and advertisement, etc. With the advent of smart wireless hand held devices, the bidders can participate in e-auctions any time, any where and any place. Bidding in an e-auction is a challenging task as the bidder is mobile which may cause frequent disconnections and may not be acquainted with the e-market environment that hosts multiple concurrent e-auctions for required items. With the advent of smart wireless hand held devices, the bidders can participate in e-auctions any time, any where and any place. Bidding in an e-auction is a challenging task as the bidder is mobile which may cause frequent disconnections and may not be acquainted with the e-market environment that hosts multiple concurrent e-auctions for required items. The mobility of user can be taken care of by using the mobile agents for bidding since they can communicate asynchronously without the need of permanent connectivity [1].

One of the techniques to ensure winning a bid is to predict the closing price of considered set of relevant auctions. However, it is not trivial to predict the closing price of an auction as it depends on the two dynamic factors such as e-market environment and bidder’s behavior. The log of closing prices do not bear much influence on the prediction, where as uncertainty caused due to the aforesaid factors have a higher influence on prediction. The factors that influence the variation in the e-auction environment are number of bidders, number of concurrent active auctions for the same product, reputation of the auction site and opening bid value. The bidding rate depicts the bidder behavior and will be able to identify if the bidder is either risk neutral or risk proclav. Artificial intelligence provides many alternatives as far as nonlinear problems are considered. Some of them are mentioned in the related works (see section 1.1). Traditional prediction methods, such as time series, usually

1K.L.E.S.College of Engineering and Technology, Belgaum-590016, India
E-mail:sidnal.nandini@gmail.com

2Wireless Information Systems Research Laboratory, RITM, Bangalore-560 064,
Email:sunil.manvi@revainstitution.org
depends heavily on huge historical data and use statistical distribution to predict the closing price as given in [2]. The next generation methods like the fuzzy approach, artificial neural networks, grey system, expert system and genetic algorithms require considerably less historical data for prediction compared to statistical prediction. These methods have their own limitations such as developing knowledge base, frequent appropriate training of the networks with the updated requisite information. The grey theory forecasting system has the inability to establish the social relationship among the variables that influence prediction of the closing price.

In this paper, a set of relevant auctions identified as described in [3] are considered by the bidder to participate in bidding. This paper presents a cognitive agent based model (by using static and mobile agents) by employing Belief Desire Intention architecture to predict the closing price of the identified relevant auctions on behalf of the bidder after every round of an auction (English auctions). The predicted value is used further to compute the bid value during the bidding process so as to increase the probability of winning an auction satisfactorily. The prediction method takes care of the nonlinear relationship between the closing price and the factors that influence the prediction.

1.1 Related works
Some of the works related to closing price (or final price) prediction in auctions are given in this section. In [14], development of a predictor agent that utilizes Grey System Theory to predict the on-line auction closing price in order to maximize the bidder’s profit is presented. The performance of this agent is compared with an Artificial Neural Network Predictor Agent (using Feed-forward Back-propagation Prediction Model). The work claims to be better than fuzzy or artificial neural network model. It considers few closing prices in the past but does not consider other factors like bid rate, number of bidders or concurrent auctions etc., that influence the closing price. All auctions are assumed to have begun at the same time and all the bidders participate from the beginning. Hence it does not consider the real world situations of the on-line auctions. This work is considered for comparison with our proposed model for predicting closing prices.

The work presented in [4] considers only the log of the closing price and does not consider parameters like the number of bidders, bid rate etc., which may not lead to accurate prediction. Large amounts of historical exchange of data from possible auction sites are collected, and machine learning algorithms are used in combination with the traditional statistical methods to forecast the final prices of products. An attribute construction method to overcome the problem of dynamically changing bid list is used. In [5] the authors have presented a simulated environment to test the proposed algorithms. The simulated results are further used to decide the final prices. By mimicking the bidder’s behavior, the prices are predicted by running the auctions in many iterations. The environment considered does not exactly mimic the real world situation as the bidder behavior and other changing factors are not considered.

[6], the work proposes a bid calculation function based on forecasting of the next price in English and Dutch auctions. The forecasting is based on two linear adaptive filters for stochastic estimation, whose parameters are computed using a genetic algorithm. The work given in [7] presents an auction system based on mobile agents. By using a proxy server, a user can generate a mobile auction agent by giving the bidding information, including the maximum bidding price. The agent then moves to the required server to participate in an auction according to the user’s requirements. A mathematical model is presented to analyze the commonly used proxy bidding method. The study in [8] suggests and validates a forecasting model of winning bid prices. Especially, it explores the possibility of using the data mining approaches, such as neural network and Bayesian network in building a forecasting model. It considers only bid period and opening bid value to predict the closing price. The goal of the work in [9] is to derive models for forecasting the final price of ongoing on-line auctions. A dynamic forecasting model is proposed to predict the auction price that can overcome the dynamic nature of the E-market and bidder behavior. The modern functional data analysis methods that take into account the price velocity and the price acceleration as the basis of forecasting model are presented. In [10], historical data is collected and machine learning algorithms are used to predict the final prices just before the auction commences. The input to the system is the data filled in by the seller, details of the seller, item, and attributes of the auction. It does not address concurrent auctions and number of bidders. In [11], an approach to develop bidding agents that participate in multiple alternative auctions with the goal of obtaining an item with a given probability is presented. In [12], a neuro fuzzy method is proposed to predict the final price in addition to exploring the complicated nonlinear relationship among the auction mechanisms and final price. The work given in [13] presents some important kind of e-auctions such as single seller English auction, nth price English auction and continues double auctions and is
contemplated and a solution is provided for each of them. We observe from the literature survey that even though several models are available for predicting the closing price in an auction, there have been always some limitations which provide the scope for rethinking of closing price predictions. To overcome the limitations such as non-inclusion of some market parameters, absence of iterative predictions and bidder’s behavior parameters, a combination of statistical and cognitive approach has been proposed in this paper.

1.2 Our contributions
In this paper, we propose a model for prediction of closing price based on the information collected from the relevant auction sites using BDI architecture. The model works in following phases. (1) The relevant auction services for the requested desire (product) are obtained from the work given in [3]. (2) From the relevant auction sites, information about the history of auctions conducted so far for the same requested product are fetched. The information (parameters) with respect to the average opening bids, average closing value, number of bidders, reputation of the site and bid rate are obtained. (3) From the same relevant auction sites, current auction information for the parameters mentioned in step 2 is obtained. (4) Past and the current belief sets for the auctions are formulated based on past and current information. (5) The closing price at the time of commencement of auction is predicted based on the information derived from past belief set where the historical data would be stored. (6) From the current belief set, the closing price for the subsequent iterations are predicted, and (7) Prediction continues till the auction is completed or withdrawn.

Our contributions in the paper are as follows. (1) The work emphasizes on the influence of most of the e-market and bidder parameters to predict the closing price. (2) Employs software agents (static as well as mobile) to perform closing price prediction. (3) The key parameters considered are pragmatic rather than assuming the ideal conditions. (4) Predicts the closing price on every round of auctions to facilitate bidding strategy using the computational Model. (5) The historical data required to predict is relatively lesser than other methods of prediction. (6) The computations used to predict are not complex and are based on cognitive reasoning.(7) The proposed model is compared with grey system forecasting logic (which is shown to be better than artificial Neural network and Fuzzy system) [14] by considering bidding strategy defined by authors of [15] (referred as NJ strategy in this work) and the random bidding. It is observed that proposed model performs better than grey theory model in terms of accuracy, winning probability and overheads.

2 Proposed work
This section describes the proposed model in terms of the network, market, bidder and auction environment, computational models and agencies.

2.1 Network environment
The network environment consists of clusters of auction servers in a fixed network, regional gateways, and mobile bidders in the wireless environment. Clusters are categorized based on their physical geographical locations where each cluster consists of auction servers hosting several auctions. The gateways are connected to the network based on the regions. Mobile bidders are in the vicinity of a wireless local area or in a cellular network. The mobile bidders in a particular region request its regional gateway for auction services. The gateway comprises of auction service directories, case base and the computational methodologies to identify the relevant auctions to participate in bidding process, computational methodologies to predict closing price of relevant auctions. An agent platform exists in all the components of network environment to facilitate agent based activities. The agent platform supports persistence, security, communication and computing services.

2.2 Market environment
The e-marketplace is flexible and can be configured to take up any number of English auctions at any discrete time. The auctions can run concurrently on various auction servers that are connected to the WWW. Each auction house located on a server conducts multiple auctions for various products and comprises of an agent platform that can host an agency to carry out the auctions and communicate with the bidders. The auctions start with a predefined opening bid value in case of English auction. The auctions have a defined start which varies from one auction to another and is completed when only one bidder remains. Thus there can be multiple auctions running in parallel for a product in the market at a given time with overlapping start and end times. Each active auction maintains an e-board to display information of active auctions. The service directory on the regional gateway provides the information of all active auctions for the products requested by the bidder’s.
2.3 Auction environment

The auctioneer conducts the auctions and will follow ascending price model with finite number of discrete bid levels/iterations. They will have a fixed start time and a soft closing time to avoid snipping. It permits bidders to bid for a common item starting from a defined opening bid. Each bidder is permitted to bid his value higher then the maximum bid value in the previous round. The maximum bid value at each iteration is announced on the e-board maintained by the auction site. The closing price is the maximum bid announced by the bidder in the last iteration where only one bidder is left out in the bidding process. The auctioneer decision is final and notifies the participating bidders about closing price and the winner details.

2.4 Bidder Environment

The mobile bidders register themselves in the registration desk of the regional gateway to participate in bidding. The bidders may use handheld devices to bid. A light weight agent platform that hosts an agency to carry out auctions and communicate with the bidders may be loaded on the handheld devices of the bidders. The agencies assist the bidder in fetching a set of relevant auctions based on their individual requirements and predict the closing price in each relevant site so as to participate effectively in bidding so as to increase the winning chances. The participating bidders may be risk neutral, averse or proclive based on their aggressiveness to posses the product. A bidder can participate simultaneously in more than one auction to bid for either a single/multiple products. The bidders follow bidding strategies such as given in (Minghua et al. 2006) and random bid increments within the specified range.

2.5 Closing price prediction computational model

This section describes the computations required to predict the closing price and in turn assist to compute the bid increment at each iteration. The closing price is predicted before the commencement of the auction and at every round to compute the bid increment till the completion of an auction. The factors considered for prediction are number of bidders, number of concurrent auctions, bid value, and reputation of the auction and bid rate. The average values of the aforesaid parameters are obtained from the recent past completed auctions to predict a closing price for the first round (before commencement) of the relevant auction and for the subsequent rounds the values of the parameters are derived from the previous rounds. Predicted closing price may be defined as a tuple \((\beta, \psi, \zeta)\) where \(\beta\) is a set of belief sets, \(\psi\) is the product name (desire) with specifications, \(\zeta\) is the computations (plan) to predict closing price. \(\beta\) is represented by the following set. \(\beta = \{a_1, a_2, a_3, a_4\}\). Where \(a_i\) is the belief set of the current round of relevant auction, \(a_p\) is the belief set of the previous round of the relevant auction and \(a_0\) is the belief set obtained by considering the average of the past closed auctions in the same auction site and are represented by following sets. \(a_p = \{\omega_0^p, \omega_1^p, \omega_2^p, \omega_3^p\}\). \(a_1 = \{\chi_1, \chi_2, \chi_3, \chi_4\}\). \(a_0 = \{\eta_1, \eta_2, \eta_3, \eta_4\}\). \(a_i\) and \(a_p\) are updated for every round of auctions for \(i = 1\) to \(n\), where \(n\) is the number of rounds. The four parameters in each of the sets correspond to number of bidders, number of concurrent auctions, bid values and bid rate. One more parameter called reputation of the auction site is also taken into account along with these parameters. While considering \(a_0, \eta\) is represented by equation 1 at the beginning of auction.

\[
\eta = \sum_{j=1}^{m} \eta_j / m. \tag{1}
\]

where \(k = 1\) to \(4\) and \(m\) past closed auctions depending on bidders choice and/or availability of past history at the auction sites. The members of \(a_0\) are given by equation 2 for \(k = 1\) to \(4\) for rounds of auction.

\[
\omega_i^0 = \{ \eta_i \} \quad \text{for } i = 1
\]

\[
\psi_i^0 = \{ \eta_i \} \quad \text{for } i = 2 \to n \tag{2}
\]

The factors influencing the prediction of closing price are computed as follows.

- **Number of bidders** - let \(\Box_i^1\) be the number of bidders participating in the \(i^{th}\) round of the current relevant auction and \(\omega_i^1\) be represented by equation 2 for \(k = 1\). Thus \(\tau_1\) in equation 3 represents the influence of number of bidders. If the number of bidders is many the demands for the product would be high: hence bidding becomes rigorous and in turn the closing price may increase.

\[
\tau_1 = \Box_i^1 - \omega_i^1 \quad / \omega_i^1 \times 100 \tag{3}
\]

- **Number of concurrent auctions** - let \(\Box_i^2\) be the number of concurrent auctions available at the \(i^{th}\) round of the relevant auction and \(\omega_i^2\) is given by equation 2 for \(k = 2\). Thus \(\tau_2\) in equation 4 represents the influence of number of concurrent auctions on the closing price. If the product that is being auctioned is available to bid in many concurrent auctions then closing price decreases as the options for bidders increase.

\[
\tau_2 = (\Box_i^2 - \omega_i^2) / \omega_i^2 \times 100 \tag{4}
\]
• **Opening bid value** - the influence of the opening bid value on the closing price of the considered relevant auction is given by τ_3 in equation 5, where ω_3 is given by equation 2 for $k=3$ and ω_3' is the bid value at i^{th} round of the considered relevant auction. Closing price is directly proportional to the opening bid value since the opening bid value is evaluated based on the closing price in the past.

$$\tau_3 = \left\{ \frac{(\omega_3' - \omega_3)}{\omega_3} \times 100 \text{ for } i = 1 \right\} \quad \text{(5)}$$

• **Bid rate** - is the rate at which the bid increment is changing at each round. ω_4' is the maximum bid value in the previous round given by equation 2 for $k=4$. ω_4 is the maximum bid value in the i^{th} round. This factor τ_4 is given in equation 6.

$$\tau_4 = \left\{ \frac{(\omega_4' - \omega_4)}{\omega_4} \times 100 \text{ for } i = 2 \text{ to } n \right\} \quad \text{(6)}$$

• **Reputation/Reliability of auction site** - closing price depends on the reputation of the auction site. The reputation of the auction site is obtained from the feedback given by the participants/user-agents. It is represented by τ_5 and is constant throughout the auction process. ζ is the set of plans (computation of the aforesaid parameters) to predict the closing price χ at i^{th} round. Plans are executed by first computing γ and then χ, where i is number of rounds. γ represents the average closing price for the desired product in the recent past m closed similar auctions before the commencement of the auction (before the first round, i.e., $i=1$) as well as predicted closing price in subsequent rounds of auction (for $i = 2 \text{ to } n$ rounds).

γ is given by equation 7,

$$\gamma = \left\{ \frac{\sum_{i=1}^{m} \gamma_i}{m} \text{ for } i = 1 \right\} \quad \text{(7)}$$

The closing price of an auction for i^{th} round is computed as χ given in equation 8 using the aforesaid parameters, $\tau_1, \tau_2, \tau_3, \tau_4,$ and τ_5. Finally, the predicted closing price χ' is computed as given in equation 9 which can be used for bidding strategy.

$$\chi = \frac{\gamma + \tau_1 \gamma' + \tau_2 \gamma' + \tau_3 \gamma' + \tau_4 \gamma' + \tau_5 \gamma'}{2} \quad \text{for } i=1 \quad \text{(8)}$$

$$\chi' = \left\{ \frac{\chi + \chi'}{2} \text{ for } i=2 \text{ to } n \right\} \quad \text{(9)}$$

2.6 **Agency**

In this section, we discuss the gateway agency used in the model. This agency located in the regional gateway consists of a BDI bidder agent that creates mobile agent clones to perform its task of predicting the closing price of the relevant auctions. Figure 1 shows the gateway agency and the relevant auction sites in various clusters. This agency predicts closing price of the relevant auctions before the auction commences and also at each round of the auction. It consists of a static bidder agent based on BDI architecture. It creates mobile agent clones, controls and coordinates the activities of the clones and thus it is called as a master agent.

The BDI bidder agent dispatches a mobile agent clone to each relevant auction site to place bids and to fetch the context of the current environment to predict the closing price. Before the commencement of an auction the clones communicate the history of the bidding information of past auctions from the respective auction sites for the products mentioned in the bidder’s desires.

![Fig. 1: Gateway Agency](image-url)
The historical information such as average closing price, average opening bid value, number of rounds etc. are fetched. The master agent uses the aforesaid information provided by the clones to predict the closing price of an auction that are due to commence using the computational model given in section 2.5. After every round, the clones communicate the current context environment such as number of bidders, current maximum bid, bid-rate, etc. to the master agent which in-turn predicts the closing price and the bid increment after every round of auction. This communication continues either until the master wins or the auction closes or withdraws. Figure 2 depicts the architecture of the BDI bidder agent. The BDI bidder agent stores all the information about the relevant auctions in its beliefs. The belief analyzer classifies and formulates the beliefs into past and current belief sets. The past belief set consists of historical information while the current context environment is stored in the current belief set. After each round of bidding the contents of current belief set are transferred to past belief set.

The BDI bidder agent does not assume ideal conditions of the environment in which it is situated, rather it assess by using the updated belief sets and hence quickly and accurately determines the environment. It can predict even when the co-bidders are risk neutral, averse or proclive. The BDI bidder agent is guided by the norms defined by the bidder and auctioneer. It will simultaneously participate in only those relevant auctions identified by the bidder. It will not bid more than the allotted budget and will interact with the bidder after every round or whenever required. It will program the clones only to extract the announced information and will not intrude in accessing the auction sites secured information. The BDI bidder agent can as well sleep/skip few rounds to study the environment and then continue predicting. Thus the bidder agent is a normative BDI agent.

2.2.1. Advantages and limitations

The advantages of the proposed model are as follows.

- Autonomy of predicting the closing price is achieved.
- It can predict the closing price at any point of time during the auction process.
- The prediction does not need huge historical data.
- The bidder agent can assess the type of environment in which it is situated rather than assuming the ideal conditions.
- The computations used to predict are simple.
- The prediction is tailored to each bidder’s requirements, preferences and priorities.

The limitations of the proposal are as follows.

- Suffers from a more sophisticated mechanism that can be used for belief parsing, analysis and formulation.
- Does not consider a mechanism to infer the varied intentions.

3. Simulation model

The proposed model has been simulated in various network scenarios. Simulation environment for the proposed work comprises of four models namely network, market, auction and bidder models. The models are described as follows.

Network model - the network considered for simulation is combination of both wired and wireless environment. It consists of Nc clusters, each cluster consisting of Ns servers hosting Na auctions in the fixed network. Rg regional gateways hosting Nm service directories and Np BDI agents to bid on behalf of Np bidders. Ns servers, a subset of Nk are connected to the gateway within the region.

Market model - the simulated virtual market place consists of Na number of active auctions offering S auction services in Nk auction servers. Na is subset of Nk since at a given point of time t, all auctions are not active. Nra, a subset of Na are relevant concurrent auctions auctioning the same product in a considered time window and personalized to each bidders requirements. The market place is flexible and can be configured to run any number
of auctions. Each auction auctions P_k products. Every active auction maintains an E-board that maintains the details of current active auctions.

Bidder model - bidders may bid/ sleep/withdraw from the relevant auctions. Each bidder predicts the closing price for the products that lie in the range units x to y. The bidder participates in all the relevant auctions (N_{ra}) concurrently. The BDI agent bids the bid value Bvi in all the relevant auctions after interacting with the bidder after each round. Each bidder is allotted a budget of unit Bu within which the BDI agent has to bid and may be increased on request. The numbers of bidders in the relevant auction sites are Nb. The work in (Minghua, et al. 2006) is considered for simulating bidding strategies for one of the bidder participating in the auction. This is referred as NJ strategy in our work. For the remaining bidders random bidding strategy is used where the bid increments are randomly selected in a given range.

Auction model - all the relevant auctions fix the opening bid value unit OB. After each round the maximum bid value unit Mb is announced on the auction site E-board. Bidding is stopped when only one bidder is left-out. The data such as average closing price $apcp$, average number of bidders ANb, average number of concurrent auction sites $ANca$, and average opening bids unit AOB from the past n completed auctions in the relevant auction sites are fetched.

3.1 Simulation Procedure

To illustrate some results the following data is considered. $N_c = 1$ to 4, $N_k = 1$ to 8, $Nu = 50$ to 80, $Rg = 1$, $N_{m} = 1$, $N_p = 2$ to 30, $N_t = 1$ to 4, $N_{ma} = 5$ to 500, $N_{ra} = 2$ to 16, $Nb = 20$ to 40, $P_k = 10$ to 400, $Bvi = 200$ to 1000, $Bu = 25000$ to 30000, $OB = 400$ to 1000, $x = 25000$ to $y = 32000$, $n = 4$, $apcp = 28000$ to 31000, $ANca = 2$ to 16, $ANb = 20$ to 40, $AOB = 600$ to 1000.

Begin

• From each identified relevant auction identified, fetch the current and past data about the relevant auctions.
• Formulate the belief sets.
• Apply the proposed computational model to predict the closing price at every round.
• Apply the grey system forecasting logic to predict the closing price before the commencement of the auction.
• Using the NJ bidding strategy and random bidding technique for bidders, compute the bid value at each round till the allotted time for auction is exhausted or some one wins.
• Compute the performance of the models.

End

3.2 Performance Measures

The following performance measures are considered in simulation. Closing price (Actual/Predicted) – is defined as the predicted and actual closing price at some relevant auctions sites after completion of auctions. Probability of winning - is defined as chances of winning in one of the relevant auction using the predicted closing price. Agent Overhead - it is the additional code, data and state of the agent that utilizes the communication channel while migrating to the server. Computational overhead - it is the additional number of instructions executed to predict the closing price and the related parameters.

4 Results

In this section, the results obtained with proposed work and grey model is discussed. The simulation is carried on core2duo machine using ‘C’ language. The analysis of the performance parameters are given in this section.

4.1 Closing price (Actual/Predicted)

Figure 3 shows the actual and predicted closing prices. The predicted closing prices using the proposed model and grey theory model are compared with the actual closing prices for an item requested by a bidder following NJ strategy to bid in different relevant auctions that are concurrently running. It may be observed that in all relevant
auction sites the predicted closing price using proposed model is closer to the actual closing price than the predicted closing price using grey code theory.

Fig. 3: Closing price (Predicted/actual) vs. Bidders Relevant Auction Sites

4.2 Probability of winning
Figure 4 shows the probabilities of winning using both the prediction methods. The probability of winning is higher when the proposed model is used to predict the closing price as it uses a combination of statistical methods and cognitive reasoning.

Fig. 4: Probability of winning vs. Rounds in a Relevant Auction site

4.3 Overhead computations
Figure 5 and 6 show the overhead in terms of bandwidth utilized and the number of computations to predict the closing price. With the usage of BDI agent to predict closing price, the bandwidth utilized for communications between the relevant auction sites is higher than without using agents for prediction such as grey theory model. The numbers of computations are to be performed to predict the closing price after each round of auction. A trade-off has to be considered between the extra bandwidth utilized and the computations performed with that of the cognitive reasoning used to improve the probability of winning.

5 Conclusions and Future Scope
This paper elaborated on predicting the closing price of the e-auctions in mobile environments using cognitive agents. The budget allotment may be planned based on the knowledge of predicted closing price before the commencement of an auction. Thus, prediction may improve the probability of winning. This work brought out the cognitive reasoning used in combination with statistical methods for predicting closing prices to decide the bidding incrementing strategy for every round of an auction. Proposed prediction model performed better than grey theory model on a common platform with the use of common bidding strategy in terms of accuracy. This is because the proposed model considers all the dynamic factors such as number of bidders, number of concurrent auctions, opening bid value, bid rate and reputation of the relevant auction that affect the closing price and also employs cognitive capabilities in bidder agents. A mechanism based on machine learning for parsing and analyzing beliefs and formulating belief set may be adopted. Varied intentions can be inferred for execution of plans based on fuzzy or neuro fuzzy methodologies.
References

